Global Vegetation Phenology Parameters From MODIS VI 5-year Time Series
Kamel Didan¹, Alfredo Huete¹

¹ Terrestrial Biophysics & Remote Sensing Lab., Department of Soil, Water, and Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
kamel@ag.arizona.edu

Introduction
- Global and regional phenology is important in ecosystem simulation models and coupled biosphere/atmosphere models.
- Phenology metrics are directly used, or regulated, the timing and length of the growing season in large-scale BGC models.
- BGC and Climate models would greatly benefit from high quality high resolution phenology parameter maps.
- Recent development in remote sensing data reliability, qualitative QA analysis, and most importantly the successful EOS MODIS mission make available for the first time a very high fidelity stable time series.
- Phenology maps at 1km resolution will be a great asset to climate change related studies, the study of earth vegetation dynamics, and to the modeling community.

Objectives
- Assess the potential of extracting global vegetation dynamic metrics (phenology parameters) using the MODIS VI product 5-year record.
- Establish the accuracy of these parameters and any potential global applications.
- Evaluate the differences between the NDVI and EVI based results.

Data and Methodology
- We used the global 1km MODIS VI product times series 5 year record (Feb-00’ to Feb-05’).
- This 5-year record was processed using a QA reliability index to eliminate clouds, aerosol, shadow, viewing extensive effects.
- This 5-year record was processed into an average year, representing an annual global seasonality. 23 consistent, cloud free, aerosol free, small view angle, and gap filled cycles were generated (16-day cycles).
- This average year was used to drive the phenology parameter extraction algorithm.

Phenology parameter extraction
- A new phenology metrics extraction algorithm was developed based on a modified White & Field method.
 - Original method based on attainment of a ‘half-maximum’ VI level designed to predict the initial leaf expansion of dominant evergreen species
 - Modified to work with the new MODIS VI reliability index
 - Accommodates double seasonality scenario
 - Fully automated and completely based on the actual sensor data (no empirical smoothing, etc...)

Results
- We achieved ten phenology parameters, extracted globally at 1km. With the exception of few pixels, every 1km location on earth was successfully processed. The parameters extracted included: Average VI signal for the growing season, Cumulative VI signal for the growing season, Green Up and Green Down Rates, Peak VI Signal date, Peak VI Signal, Start of Growing Season, Length of Growing Season, Number of Seasons. Examples are shown on the right.

Conclusions
- Phenology was accurately derived using MODIS NDVI/EVI.
 - The new Phenology extraction algorithm was robust and spatially consistent
 - The Location, elevation and biophysical characteristics of vegetation were accounted for accurately by using actual sensor data at 1km spatial resolution
- In combination with other biophysical parameters (LAI, IPAR, NPP, etc...) these phenology metrics can be used to drive various Carbon, Ecosystem productivity models at the unprecedented 1km resolution

Acknowledgements
- This work was supported by NASA MODIS contract # NNG04HZ20C

For more information on this reliability index look at the paper “MODIS VI Product Reliability Index: Improving The Quality Of Time Series Data”, By Didan Kamel and Huete Alfredo.